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WLS1993]  Tyning of Logic Synthesis Scenarios

Lukas PP.P. van Ginneken Andreas Kuehlmann
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The manual tuning of a logic synthesis scenario, is a time consuming activity. Logic synthesis scenarios are

- dependent on many factors, such as the type of logic, design style, the set of transforms and the optimization

goals. An automated method for the tuning of synthesis scenarios is presented. It is shown that using this method

a manually designed standard scenario could be improved by an average of 8.9%. We also show that scenarios
tuned to particular designs could improve the size by an additional average of 4.6%.
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Design Flow
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[Hathaway, Integrated, Incremental, and Modular EDA Tools,1996]
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Prediction is still very difficult during synthesis
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Question

= Why does it take about 2 seconds to look up the shortest path from my home to JFK on my

phone, and does it take a couple of hours to find the critical path in a large chip in an

advanced technology on a sizeable server?
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1. How much data has Google Maps accumulated

Combining satellite, aerial and street level imagery, Google Maps has over 20 petabytes
of data, which is equal to approximately 21 million gigabytes, or around 20,500 terabytes

2. How often are the images updated?

Depending on data availability, aerial and satellite images are updated every two weeks.
Street View images are updated as quickly as possible, though Google wasn't able to
offer specific schedules, due to its dependence on factors such as weather, driving
conditions, etc.

8. In the history of Google Maps, how many Street View images have been taken?

The Street View team has taken tens of millions of images since the Street View project
began in 2007, and they've driven more than 5 million unique miles of road.
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Design Data Volume

= 3Gb Oasis
[ Scratch = 1 Tb product
B User engineering
O Analysis = 5Tb test and

O Phys Design
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EDA1.0

Point tools on individual Workstations
EDA 2.0

Integration of design tools on distributed Servers
EDA 3.0

Integrated Design Flow on very large Clusters
What will EDA 3.0 look like?
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Designer, | want to
get to my DATA.. from

h I
anywhere any p ace. Brayton / Cong 2009 NSF workshop,
the DATA be there without me EDA Past, Present, Future)

waiting for it
analyze the DATA with

whatever tools | can lay my
hands on

know how to improve my
design [data]

know how to get from Ato B
through my design process

Intuitive, simplified and
standardized design
environments.

Scalable design methodologies
Predictable design flows
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EDA1.0

Point tools on individual Workstations
EDA 2.0

Integration of design tools on distributed Servers
EDA 3.0

Integrated Design Flow on very large Clusters
What will EDA 3.0 look like?

How do we get there?
Learn from analytics
Learn from Big Data: other data and graph parallel systems.
Capitalize on the Changing nature of IT so we will be able to run this effectively.
Change the way we interact with Design Data
Change our algorithms to take advantage of these changes
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YARN

HADOOP 1.0 HADOOP 2.0

MapReduce Others
e 2 (data processing) (data processing)
MapReduce J U
(cluster resource management YARN
& data processing) (cluster resource management)

[tomsitpro.com]

= YARN: Yet Another Resource Negotiator
= Resource management and job tracking/scheduling got split up.
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Scaling Apache Giraph to a trillion edges

Giraph Hive MR

HivelO = YARN MapReduce
Hive Tables
HDFS

Four minutes https://www.facebook.com/notes/facebook-
One lteration of PageRank engineering/scaling-apache-giraph-to-a-trillion-
edges/10151617006153920
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Spark

MLlib

(machine
learning)

Apache Spark

= RDDs: Resilient Distributed Datasets
= Transformations and Actions
= Lazy evaluation of transformations

— Lineage graph
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Tight integration gives the ability
to build applications that seamlessly combine different processing models.
in Spark you can write one application that uses machine learning to classify data in
real time as it is ingested from streaming sources.
Simultaneously, analysts can query the resulting data, also in real time, via SQL
(e.g., to join the data with unstructured lodfiles).
More sophisticated data engineers and data scientists can access the same data via
the Python shell for ad hoc analysis.
Others might access the data in standalone batch applications.
Second, the costs associated with running the stack are minimized, because instead of
running 5-10 independent software systems, an organization needs to run only one. These
costs include deployment, maintenance, testing, support, and others.
Each time a new component is added to the Spark stack, every organization that uses Spark
will immediately be able to try this new component.
When Spark’s core engine adds an optimization, SQL and machine learning libraries
automatically speed up as well.
This changes the cost of trying out a new type of data analysis from downloading, deploying,
and learning a new software project to upgrading Spark.

All the while, the IT team has to maintain only one system.
[Learning Spark, by Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia]
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Spark and Graphx

The GraphX Stack

PageRank | Connected [ Shortest | SVD | ALS

Path (10)] (40) Triangle
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Quadratic Programing Solver for Non-negative Matrix Factorization with Spark
[ http://spark-summit.org/2014/talk/quadratic-programing-solver-for-non-negative-
matrix-factorization-with-spark ] = DATABRICKS
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Graph Databases
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Wavefront Technology Mapping, Structural Bias
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[ Wavefront Technology Mapping , L. Stok, M. lyer, A.J.

Sullivan, 1998 IWLS ]
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Let us harvest the enormous power of distributed analytics and optimization.

Let us Create Fantastic new designs by harvesting the full power of Synthesis.

Let us drive to Phenomenal design flow overall TAT improvements and efficiencies.

20

©LS 2015



